Радикальная полимеризация: механизм, кинетика и термодинамика. Синтетические полимеры Факторы ведущие к инициированию радикальных процессов

Образование свободных радикалов возможно при действии химических и физических факторов, поэтому инициирование радикальной полимеризации подразделяют на физическое и химическое (смотри схему)

В технологии производства полимеров преимущественно распространены химические методы инициирования, когда в реакционную смесь вводят инициаторы (J)- вещества, которые в определенных условиях легко распадаются на радикалы.

В группу инициаторов входят следующие вещества (таблица 10)

Таблица 10 –Типы инициаторов радикальной полимеризации

Тип инициатора Формула (в общем виде) Механизм распада на радикалы
Дигидропероксиды
Алкилгидропероксиды
Диалкилпероксиды
Диацилпероксиды
Дисульфиды
Персульфаты
Азосоединения

Конкретные представители инициаторов, условия и механизм их распада приведены в таблице 11.

Легкий и быстрый распад инициаторов на радикалы происходит по связям кислород – кислород или углерод – азот, так как эти связи обладают наименьшей прочностью (энергией связи).

Наименьшие температуры распада (50÷85 0 С) и соответственно наименьшая энергия активации (Е а и) у таких инициаторов как персульфат аммония, динитрил азобисизомасляной кислоты, пероксид бензоила. Эти инициаторы чаще всего используются в радикальной полимеризации.

Окислительно-восстановительные системы (ОВ-системы) – это комплексные системы, которые включают в себя окислитель и восстановитель (промотор). Роль окислителя чаще всего играют выше приведенные инициаторы J (пероксиды, гидропероксиды и др.). Промотором называют вещество, которое ускоряет распад инициаторов на радикалы . Промоторами в ОВ-системах служат соли металлов переменной валентности в низшей степени окисления , такие как хлорид железа двухвалентного FeCl 2 , хлорид меди одновалентной CuCl, нафтенаты кобальта, нафтенаты никеля () и др. Кроме них роль промоторов играют амины, сульфиты и др. В лакокрасочной промышленности промоторы – ускорители полимеризации называют сиккативы .

Механизм действия окислительно-восстановительных систем различен. Простейшей ОВ-системой является реактив Фентона – смесь из пероксида водорода Н-О-О-Н и хлористого железа FeCl 2 . В этой системе нестабильный катион Fe 2+ легко теряет электрон `е и переходит в высшую степень окисления. Fe 3+ . Выделившийся электрон ускоряет распад пероксида водорода Н-О-----О-Н на ион НО - и радикал НО · .

Распад инициаторов на радикалы в присутствии ОВ-систем идет очень быстро и энергия активации стадии инициирования при использовании ОВ-систем ниже, чем при использовании только одних химических инициаторов (Е а и (ОВ ) < Е а и ( J ) ) . Обычно энергия активации окислительно-восстановительного инициирования Е а и (ОВ ) составляет 42÷84 кДж/моль, а энергия активации инициирования с применением только инициаторов Е а и ( J ) равна 112÷170 кДж/моль.

Инициирование РП, т.е. образование свободных радикалов идет в два этапа , которые схематично можно представить следующим образом:

а) образование радикалов J · в результате распада молекул инициатора J :

б) образованием активных радикалов роста J- М · из молекул мономеров М:

На примере мономера винилхлорида эта реакция выглядит так:



Начальный этап (а) всегда требует затрат энергии активации Е а и, протекает с низкой скоростью и лимитирует весь процесс . Не все радикалы инициатора J · могут вызвать второй этап б) и образовать радикалы роста J- М · .

Часть радикалов инициатора исчезает в результате протекания обратной реакции рекомбинации J · + J · =J 2 .

Константа скорости инициирования k и при РП мала и составляет k и =0,8 ÷ 5,0 ×10 -5 с -1 .

Фотохимическое инициирование используется реже, чем химическое. При фотохимическом инициировании молекулы мономера М поглощают энергию квантов (hn ) излучения с длиной волны 100 нм

Энергия активации фотохимического инициирования Е а и (ф/х ) значительно ниже энергии активации чисто химического инициирования Е а и (Е а и (ф/х ) <<Е а и ( J) ) и близка к 0 (Е а и (ф/х ) » 0 кДж/моль). Вследствие этого фотохимическая радикальная полимеризация может протекать при низких и даже отрицательных температурах.

Однако скорость распада мономеров на радикалы при действии УФ-лучей или видимого излучения (ВИ) невысока. Для ускорения фотохимической полимеризации используют 2 приема:

1. Вводят в мономер вещества – фотоинициаторы

2. Вводят в мономер вещества – фотосенсибилизаторы.

Фотоинициаторы – это вещества, которые под влиянием энергии квантов УФ- или ВИ – излучения легче распадаются на радикалы, чем сами мономеры. Фотоинициаторами служат галогеналкилы (четыреххлористый углерод ССl 4 , 1,2 –трихлорэтанC 2 Cl 6), металлорганические соединения. Механизм действия ССl 4 следующий:

Фотосенсибилизаторы – это вещества, которые поглощают и накапливают энергию квантов УФ- или ВИ – излучения в более широком диапазоне длин волн, чем сам мономер, затем порциями большей величины отдают накопленную энергию мономеру. Молекулы мономера быстро переходят в возбужденное состояние и распадаются на радикалы. Роль фотосенсибилизаторов играют вещества, содержащие в своей структуре сопряженную двойную связь (хромофорные группы ) или ароматические циклы, например, дибензфенон или флуоресцин

дибензфенон флуоресцин

Механизм действия фотосенсибилизаторов (Ф) следующий:

Ф + hn Ф* Ф* + М Ф + М* М* М · + М ·


Таблица 11 - Основные группы инициаторов радикальной полимеризации, механизм и условия их распада

Органорастворимые Условия распада Водорастворимые Условия распада
1. Пероксид бензоила (ПБ) 2. Пероксид дитретбутила 3.Гидропероксид изопропилбензола (кумола) - ГИПЕРИЗ
4. Динитрилазобисизомасляной кислоты -ДИНИЗ 5. Диазоаминобензол
Тр=85 0 С Еа =113 кДж/моль Тр=130 0 С Еа =150 кДж/моль Тр=160 0 С Еа =130 кДж/моль Тр= 60 0 С Еа =112 кДж/моль Тр= 60 0 С Персульфат аммония (К, Nа) Пероксид водорода Окислительно-восстановительные системы Тр= 50-70 0 С Тр= 50 0 С Трмогут быть меньше0 0 С

Термическое инициирование – это вариант образования радикалов роста из молекул мономера, который проявляется при нагревании до температуры Т=100 0 С и выше. Однако этот вид инициирования изучен только для полимеризации метилметакрилата и стирола. Энергия активации термического инициирования Е а и (Т ) = 146 кДж/моль. Термическое инициирование протекает специфично, через стадию образования бирадикала мономера.

Мономеры для радикальной полимеризации

В качестве мономеров для радикальной полимеризации могут быть использованы замещённые алкены CH 2 =CH-X и CH 2 =CX 2 (X = H, Hal, COOH, COOR, OCOR, CN, CONH 2 , C 6 H 5 , C 6 H 4 Y), CH 2 =CXY (X = Alk, Y = COOH, COOR, CN); CH 2 -CX=CH-CH 2 и CH 2 -CH=CH-CHX (X = H, Alk, Hal, полярная группа).

Кинетическая схема

Процесс радикальной полимеризации включает в себя 4 стадии:

Инициирование

На данной стадии образуются первичные радикалы мономера. Для зарождения цепи используются как физические (фотолиз , радиолиз , термолиз) или химические (разложение радикальных инициаторов - пероксидов, гидропероксидов, азосоединений) методы. На первой стадии генерируются радикалы инициатора, которые присоединяются к молекуле мономера, образуя первичный мономерный радикал:

Скорость стадии инициирования определяется уравнением

Где f - коэффициент эффективности инициирования, отношение числа радикалов, образовавшихся в реакции 1a, к числу радикалов, вступивших в реакцию 1b. f = 0,6-0,8. [I] - молярная концентрация инициатора

Термическое инициирование

Применяется редко. Оно наблюдается при полимеризации бутадиена при повышенных температурах, а также стирола и метилметакрилата, образующих сравнительно стабилизированные радикалы.

Скорость термической полимеризации прямо пропорциональна квадрату концентрации мономера. Она также зависит от температуры. Образование радикалов происходит за счёт бимолекулярного инициирования:

Фотоиницирование

Сущность процесса фотоинициирования полимеризации без использования инциаторов или фотосенсибилизаторов заключается в облучении реакционной массы ультрафиолетовым излучением с определённой длиной волны, зависящей от того, разрыва какой двойной связи необходимо добиться. Так, при облучении аллилового эфира метакриловой кислоты можно добиться селективного разрыва метакрилатной двойной связи, не затрагивая аллильную двойную связь.

При этом возможны два процесса:

  • Возбуждение молекулы мономера при поглощении кванта света, столкновение с другой молекулой мономера и с определённой вероятностью образование бирадикала с последующим диспропорционированием на радикалы:
  • Распад возбуждённой молекулы мономера на свободные радикалы:

Фотоинициирование вызывают не все поглощённые кванты света. Степень инициирования определяется квантовым выходом фотоинициирования β, который выводится из соотношения

где v i - скорость инициирования, I a - интенсивность поглощённого света. Выход фотоинициирования β зависит от длины волны излучения и от вида применяемого мономера.

Кроме прямого фотоинициирования используют фотосенсибилизаторы, молекулы которых поглощают излучение, переходят в возбуждённое состояние и передают возбуждение молекуле фотоинициатора или мономера:

Радиационное инициирование

Инициирование полимеризации проводится облучением ионизирующим излучением (α-, β-, γ-лучи, ускоренные электроны, протоны и др.)

Рост цепи

Стадия роста цепи заключается в последовательном присоединении молекул мономера к растущему макрорадикалу:

Скорость реакции роста цепи выражается формулой

При этом принимается, что константа k 2 не зависит от длины макрорадикала (это справедливо при n>3-5). Величина k 2 зависит реакционноспособности мономера и макрорадикала.

Обрыв цепи

Обрыв цепи в радикальной полимеризации заключается в бимолекулярном взаимодействии двух макрорадикалов. При этом могут протекать две реакции - диспропорционирования или рекомбинации. В первом случае один макрорадикал отщепляет от другого атом водорода, во втором оба радикала образуют одну молекулу:

Скорость реакции обрыва цепи определяется уравнением

Ввиду квазистационарности процесса полимеризации реакция протекает на глубину 10% и более с практически постоянной скоростью , при этом концентрация макрорадикалов определяется формулой

Передача цепи

Стадия передачи цепи заключается в переносе активного центра макрорадикала на другую молекулу, присутствующую в растворе (мономер, полимер, инициатор, растворитель). При этом макромолекула теряет возможность дальнейшего роста:

Если образовавшийся новый радикал способен продолжать кинетическую цепь, то реакция полимеризации продолжается дальше с прежней скоростью. Если же новый радикал малоактивен, то либо скорость полимеризации замедляется, либо процесс останавливается. Это используется для ингибирования радикальной полимеризации.

В целом реакция передачи цепи приводит к образованию полимера с низкой степенью полимеризации. Передача цепи на макромолекулы приводит к образованию разветвлённых, сшитых и привитых полимеров.

Реакции роста цепи и передачи цепи конкурируют друг с другом. Количественная характеристика их соотношения определяется уравнением

Инициаторы

Наиболее распространены следующие инициаторы радикальной полимеризации:

  • Бензоилпероксид
  • Дициклогексилпероксидикарбонат
  • Ди-третбутилпероксид
  • Персульфат калия
  • Кумилгидропероксид

Ингибиторы

Применение

Литература

  • В. А. Кабанов (гл. ред.), Энциклопедия полимеров , т. 3, Советская энциклопедия , 1977, статья «Радикальная полимеризация », С. 260-271
  • Зефиров Н.С. и др. т.4 Пол-Три // Химическая энциклопедия. - М .: Большая Российская Энциклопедия, 1995. - 639 с. - 20 000 экз. - ISBN 5-85270-092-4

Ссылки

  • Статья «Радикальная полимеризация » на «Макрогалерее» - учебном научно-популярном сайте, разработанном Университетом Южного Миссисипи (англ.) русск.

Wikimedia Foundation . 2010 .

Chemijos terminų aiškinamasis žodynas

Анионная полимеризация этиленоксида в полиэтиленгликоль Полимеризация (др. греч … Википедия

Способ получения наполненных полимеров путем введения наполнителей (дисперсных, пластинчатых, волокнистых и др.) в реакц. среду на стадии полимеризации. По сравнению с мех. смесями наполнителя с готовым полимером в этом случае на границе раздела… … Химическая энциклопедия

- (от греч. polymeres состоящий из многих частей), процесс получения высокомолекулярных соединений, при к ром молекула полимера (макромолекула)образуется путем последоват. присоединения молекул низ комол. в ва (мономера)к активному центру,… … Химическая энциклопедия

Способ проведения полимеризации, при к ром исходный мономер находится в жидкой фазе в растворенном состоянии. Реакц. система м. б. гомогенной или гетерогенной в зависимости от р ри мости катализатора и образующегося полимера в реакц. среде. Р… … Химическая энциклопедия

- (полимеризация в массе, полимеризация в блоке), способ синтеза полимеров, при к ром полимеризуются жидкие неразбавленные мономеры. Помимо мономера и возбудителя (инициатора, катализатора) реакционная система иногда содержит регуляторы мол. массы… … Химическая энциклопедия

Ионная полимеризация, при к рой встраиванию очередной молекулы мономера в полимерную цепь предшествует ее координация с компонентами растущего конца цепи (активного центра). наиб. типична для процессов, развивающихся под действием катализаторов,… … Химическая энциклопедия

Полимеризация мономеров, находящихся в кристаллич. или стеклообразном состоянии. При этом молекулы мономера жестко фиксированы в пространстве и подвижность их крайне ограничена, что определяет особенности кинетики процесса и структуру возникающих … Химическая энциклопедия

Главная > Лекция

Лекция 4. Радикальная полимеризация.

Радикальная полимеризация протекает по цепному механизму . В результате каждого элементарного акта происходит образование нового радикала, к которому присоединяется новая нейтральная молекула, т.е. кинетическая цепь превращается в материальную . Основные стадии радикальной полимеризации:
    инициирование рост цепи обрыв цепи передача цепи
1 . Инициирование заключается в образовании свободных радикалов под действием:
    тепла (термическое инициирование); света (фотоинициирование); ионизирующих излучений (радиационное инициирование); химических инициаторов (химическое инициирование)
Первые три способа малоэффективны, т.к. сопровождаются различными побочными реакциями (разветвление, деструкция и т.д.). Чаще всего используют химическое инициирование, при котором образование свободных радикалов происходит вследствие термического и фотохимического распада различных соединений, содержащих нестабильные (лабильные) связи, а также в результате ОВР. Наиболее распространёнными инициаторами являются: пероксиды, гидропероксиды, изо- и диазосоединения, перэфиры, ацилпероксиды.

Пример .

а) пероксид бензоила

t распада = 70 - 80˚С

Эффективность инициирования f = 0,7 - 0,9

б) азобисизобутиронитрил

t распада = 60 - 75˚С

Эффективность инициирования f = 0,5 - 0,7

в) персульфат калия

t распад = 40 - 50˚С

Выбор инициатора обусловлен его растворимостью в мономере или растворителе и температурой, при которых может быть достигнута определённая скорость получения свободных радикалов.

Радикал, образующийся при инициировании, присоединяется к двойной (=) связи мономера и начинает реакционную цепь. Поскольку стабильность радикалов, образующихся при распаде пероксидов, азосоединений и других инициаторов разная, скорость их реакции с молекулами мономера, а следовательно, и скорость полимеризации различны. Для облегчения распада инициаторов и снижения энергии активации стадии инициирования в реакцию вводят восстановители (амины, соли металлов переменной степени окисления). С целью понижения
(от 146 до 42 - 84 кДж/моль), облегчения распада инициаторов используют окислительно-восстановительные системы . Например:

Окислительно-восстановительные системы применяют в водных средах или при полимеризации в эмульсии . Широкое распространение их в промышленности производства полимеров связано с существенным снижением энергии активации распада инициаторов на свободные радикалы и уменьшением таким образом энергетических затрат в производственных условиях. 2. Рост цепи – заключается в последовательном присоединении молекул мономера к образующемуся активному центру с передачей его на конец цепи. Развитие кинетической цепи сопровождением образованием материальной цепи.

(маленькая)

Константа скорости реакции k p = 10 2 – 10 4 (большая)

Энергия активации и константа скорости реакции зависят от природы мономеров, параметров реакционной среды.

3. Обрыв цепи – происходит в результате гибели активных центров.

Обрыв цепи приводит к обрыву материальной и кинетической цепи.

Энергия активации обрыва цепи определяется энергией активации диффузии радикалов. Обрыв может быть при любой длине растущего макрорадикала. При этом получаются макромолекулы разной длины. Обрыв чаще всего происходит двумя способами: путем рекомбинации и диспропорционирования.

Е акт ≤ 4,2 кДж/моль

E акт = 12,6-16,8 кДж/моль

Возможен также обрыв при взаимодействии растущих радикалов с низкомолекулярными веществами, присутствующими в системе. понизив температуру ↓ Понизить скорость обрыва цепи можно повысив вязкость

    Передача цепи – происходит путём отрыва растущим радикалом атома или группы атомов от какой-то молекулы (передатчика цепи). При этом:
    растущий радикал превращается в валентно - ненасыщенную молекулу; новый радикал развивает кинетическую цепь
Таким образом, реакция передачи цепи заключается в том, что вводимое в систему вещество – регулятор- обрывает растущую цепь, но при этом само становится свободным радикалом и начинает новую кинетическую цепь полимеризации. Повышение температуры и увеличение количества агента передачи цепи (например, галогенсодержащих углеводородов) приводят к резкому возрастанию скорости реакции передачи цепи. Эта реакция подавляет другие стадии полимеризации, так, что образуются индивидуальные низкомолекулярные вещества, которые можно разделить(реакция теломеризации). Они содержат концевые группы из продуктов расщепления агента передачи цепи и являются активными в различных химических реакциях, в частности для получения новых полимеров. Теломеры: олигомеры, имеющие на концах молекул реакционноспособные группы.
и т. д. Так, теломеризация этилена в среде тетрахлорида углерода протекает с образованием индивидуальных продуктов (тетрахлорпентан, тетрахлоргептан и др.) Пример . Передача цепи через: а) молекулу мономера б) молекулу растворителя

начало новой цепи

в) специально вводимые вещества (регуляторы), например, меркаптаны.

k m , k s – константы скорости передачи цепи.

При взаимодействии растущего радикала с молекулой передатчика цепи прекращается рост материальной цепи, т.е. снижается молекулярная масса образующегося полимера; кинетическая цепь сохраняется. Способность к участию в передаче цепи при радикальной полимеризации характеризуется константой передачи цепи на мономер C m , на растворитель C s , на инициатор C u .



C m = (0,1 - 5)*10 -4 – маленькое значение

Например, при полимеризации винилацетата C m = 2∙10 - 3 Из растворителей высокое значение C s у
. Так при полимеризации стирола C s = 9∙10 - 3

Кинетика радикальной полимеризации

Скорость процесса описывается уравнением:
, где
- скорость исчезновения мономера и - скорость инициирования и роста цепи При образовании высокомолекулярного полимера число молекул мономера, участвующих в стадии инициирования намного меньше, чем в стадии роста, поэтому можно пренебречь.

замерить трудно. Для стационарного процесса скорость возникновения радикала равна скорости их гибели, а скорость изменения концентрации радикалов (
)
Для стационарного процесса уравнение скорости полимеризации примет вид:
концентрация инициатора (известна и задается до начала реакции) Из уравнения следует, что скорость полимеризации зависит от скорости инициирования в степени 0,5, т.е. увеличение в два раза приводит к увеличению
в
раз. Это объясняется бимолекулярным механизмом отрыва цепи. При термическом инициировании скорость полимеризации V зависит от соотношения трёх констант скорости реакции
Типичная кинетическая кривая, описывающая конверсию мономера (т.е. превращение мономера в полимер в результате полимеризации) в зависимости от времени, имеет S-образный вид. Р
ис.1 Типичная кинетическая кривая цепной радикальной полимеризации:

1 – ингибирование; 2 – ускорение полимеризации (скорость растет со временем); 3 – стационарный период (скорость полимеризации постоянная); 4 – замедление полимеризации (скорость уменьшается со временем)

Как видно из рис. 1 на кривой можно выделить пять участков по значениям скоростей основной реакции превращения мономера в полимер в результате полимеризации: 1 – участок ингибирования , где концентрация свободных радикалов мала. И они не могут начать цепной процесс полимеризации; 2 – участок ускорения полимеризации , где начинается основная реакция превращения мономера в полимер, причем скорость растет; 3 – участок стационарного состояния, где происходит полимеризация основного количества мономера при постоянной скорости (прямолинейная зависимость конверсии от времени); 4 – участок замедления реакции , где скорость реакции уменьшается в связи с убылью содержания свободного мономера; 5 – прекращение основной реакции после исчерпания всего количества мономера. Наибольший интерес представляет стационарный период реакции полимеризации, когда при постоянной скорости происходит полимеризация основной массы мономера. Это возможно, когда количество вновь образующихся свободных радикалов (стадия инициирования) равно количеству исчезающих макрорадикалов (стадия обрыва) реакционной и материальной цепей. Степень полимеризации n (т.е. число звеньев мономерных единиц в одной среднестатистической макромолекуле) по определению пропорциональна скорости реакции роста цепи и обратно пропорциональна скорости реакции обрыва цепи, так как нейтральная макромолекула образуется в результате столкновения двух растущих макрорадикалов. n = υ p /υ обр = k p [M] / k обр 2 = k p [M] / k обр = k n / = k n I / [I] 0,5 Иными словами, степень полимеризации и, следовательно, средняя молекулярная масса полимера при свободнорадикальной полимеризации обратно пропорциональна квадратному корню из концентрации инициатора.

Влияние различных факторов на процесс радикальной полимеризации.

1. Влияние температуры С повышением температуры увеличивается скорость реакции образования активных центров и реакции роста цепи. Таким образом, повышается суммарная скорость образования полимера. Обычно скорость полимеризации возрастает в 2-3 раза при повышении температуры на 10 ˚С. Однако при общем увеличении концентрации радикалов увеличивается и вероятность их столкновения друг с другом (обрыв цепи путем диспропорционирования или рекомбинации) или с низкомолекулярными примесями. В результате молекулярная масса полимера в целом уменьшается (средняя степень полимеризации уменьшается с ростом температуры), увеличивается доля низкомолекулярных фракций в полимере. Возрастает число побочных реаций, приводящих к образованию разветвленных молекул. Увеличивается нерегулярность при построении цепи полимера вследствие возрастания доли типов соединения мономера «голова к голове» и «хвост к хвосту». 2. Влияние концентрации инициатора.

С повышением концентрации инициатора число свободных радикалов увеличивается, возрастает число активных центров, увеличивается суммарная скорость полимеризации.

Однако при общем увеличении концентрации радикалов увеличивается и вероятность их столкновения друг с другом, т.е. обрыва цепи, что приводит к снижению молекулярной массы полимера. 3. Влияние концентрации мономера. При полимеризации в среде растворителя суммарная скорость полимеризации и молекулярная масса образующегося полимера увеличивается с повышением концентрации мономера. При полимеризации в инертном растворителе, не участвующем в реакции, скорость полимеризации равна
(часто x = 1,5). Большинство растворителей участвуют в полимеризации (в реакции передачи цепи). Поэтому получаются гораздо более сложные зависимости. 4. Влияние давления. Давление высокое и сверхвысокое 300-500 МПа (3000-5000 ат) и выше значительно ускоряет полимеризацию. Пример. Полимеризация метилметакрилата в присутствии воздуха при 100˚C и p = 0,1 МПа продолжается 6 часов, под р = 300 МПа – 1 час, т.е. суммарная скорость полимеризации возрастает примерно в 6 раз. Аналогичным образом влияние p сказывается на полимеризации стирола, винилацетата, изопрена и др. NB ! Особенностью полимеризации под p является то, что увеличение скорости не сопровождается уменьшением молекулярной массы получаемого полимера.

Ингибиторы и регуляторы полимеризации

Явления обрыва и передачи цепи широко используются на практике для:

    предотвращения преждевременной полимеризации при хранении мономеров;
    для регулирования процесса полимеризации
В первом случае к мономерам добавляют ингибиторы или стабилизаторы, которые вызывают обрыв цепи , а сами превращаются в соединения, не способные инициировать полимеризацию. Также они разрушают пероксиды, образующиеся при взаимодействии мономера с атмосферным кислородом. Р
ис.2 Термическая полимеризация стирола при 100 ˚С в присутствии ингибиторов и замедлителей: 1 – без добавок; 2- 0,1% бензохинона (ингибитор); 3 – 0,2% нитробензола (ингибитор); 4 – 0,5% нитробензола (замедлитель)

Для регулирования процесса полимеризации применяют ингибиторы и замедлители полимеризации. Ингибиторы – низкомолекулярные вещества, которые меняют длительность индукционного периода, замедляя его. Это часто необходимо делать в технологии производства полимеров для предотвращения преждевременной полимеризации в неконтролируемых условиях. Ингибиторы: хиноны, ароматические амины, нитросоединения, фенолы, органические соли
,
,
,
и т.д. Пример : гидрохинон Хинон взаимодействует со свободными радикалами, превращая их в неактивные продукты. Гибель радикалов увеличивает длину индукционного периода. Наряду с ингибиторами, позволяющими полностью остановить полимеризацию, существуют замедлители полимеризации , которые только уменьшают её скорость. Замедлитель выполняет двойную роль: снижает концентрацию радикалов и уменьшает время их жизни, что приводит к снижению длины полимерной цепи. Ингибитор не влияет на скорость полимеризации, но предотвращает начало инициирования цепи, увеличивая индукционный период на кинетической кривой полимеризации. Длительность индукционного периода обычно пропорциональна количеству введенного ингибитора. Одно и то же вещество может выступать и как ингибитор, и как замедлитель, и как регулятор полимеризации в зависимости от природы полимеризуемого мономера. Например, кислород, который замедляет полимеризацию винилацетата и ускоряет полимеризацию стирола. При больших давлениях и высоких температурах кислород способствует полимеризации этилена. Это явление используют при промышленном производстве полиэтилена высокого давления. Кислород образует пероксиды или гидропероксиды при взаимодействии с мономерами или растущими цепями. гидропероксид пероксид В зависимости от стабильности промежуточных пероксидов или гидропероксидов они могут либо увеличивать концентрацию радикалов и ускорять полимеризацию, либо дезактивировать имеющиеся радикалы и замедлять или даже ингибировать полимеризацию. Рис.1.3 с.28 кулезнев Пример: ароматические нитро- и нитрозосоединения. Регуляторы полимеризации вызывают преждевременный обрыв материальной цепи , снижая молекулярную массу полимера пропорционально введенному количеству регулятора. Примером их являются меркаптаны, в том числе додецилмеркаптан. Из-за большой длины углеводородной цепи его молекулы недостаточно активны и расходуются медленно.

Примеси в мономере и растворителе : степень их влияния на процесс полимеризации определяется их химической природой и реакционной способностью по отношению к активным частицам. Для исключения влияния этих факторов берут для синтеза мономеры и растворители «кинетической чистоты», иногда вместо используют инертные газы -
,
.

Способы проведения полимеризации

Радикальную полимеризацию проводят в блоке (массе), растворе, эмульсии, суспензии и газовой фазе. При этом процесс может протекать в гомогенных или гетерогенных условиях. Кроме того, фазовое состояние исходной реакционной смеси может также меняться в ходе полимеризации.

    Полимеризация в блоке (в массе )

Полимеризацию проводят без растворителя. Из-за высокой экзотермичности процесс полимеризации трудно поддаётся регулированию. В ходе реакции повышается вязкость и затрудняется отвод тепла, вследствие чего возникают местные перегревы, приводящие к деструкции полимера, неоднородности его по молекулярной массе. Достоинством полимеризации в массе является возможность получения полимера в форме сосуда, в котором проводится процесс без какой-либо дополнительной обработки.

    Полимеризация в растворе

В отличие от полимеризации в блоке в данном случае отсутствуют местные перегревы, так как тепло реакции снимается растворителем, выполняющим также роль разбавителя. Уменьшается вязкость реакционной системы, что облегчает её перемешивание.

Однако возрастает роль (доля) реакций передачи цепи, что приводит к понижению молекулярной массы полимера. Кроме того, полимер может быть загрязнён остатками растворителя, который не всегда удаётся удалить из полимера. Существует два способа проведения полимеризации в растворе. а) Применяют растворитель, в котором растворяется и мономер, и полимер. Получаемый полимер используют непосредственно в растворе или выделяют его осаждением или испарением растворителя. б) В растворителе, используемом для полимеризации, растворяется мономер, но не растворяется полимер. Полимер по мере образования выпадает в твердом виде и может быть отделен фильтрованием.

    Полимеризация в суспензии (бисерная или гранульная)

Широко используется для синтеза полимеров. При этом мономер диспергируют в
в виде мелких капель. Устойчивость дисперсии достигается механическим перемешиванием и введением в реакционную систему специальных добавок – стабилизаторов. Процесс полимеризации осуществляют в каплях мономера, которые можно рассматривать как микрореакторы блочной полимеризации. Применяют инициаторы, растворимые в мономере. Достоинством этого процесса является хороший отвод тепла, недостатком - возможность загрязнения полимера остатками стабилизатора

    Полимеризация в эмульсии (эмульсионная полимеризация)

При эмульсионной полимеризации дисперсионной средой является вода. В качестве эмульгаторов используют различные мыла. Для инициирования чаще всего применяют водорастворимые инициаторы, окислительно - восстановительные системы. Полимеризация может протекать в молекулярном растворе мономера в , на поверхности раздела капля мономера - , на поверхности или внутри мицелл мыла, на поверхности или внутри образующихся полимерных частиц, набухших в полимере. Достоинствами процесса являются: высокая скорость, образование полимера большой молекулярной массы, лёгкость отвода тепла. Однако в результате эмульсионной полимеризации образуется большое количество сточных вод, требующих специальной очистки. Также необходимо удаление остатков эмульгатора из полимера.

    Газофазная полимеризация

При газофазной полимеризации мономер (например, этилен) находится в газообразном состоянии. В качестве инициаторов могут использоваться и пероксиды. Процесс протекает при высоком p . Выводы:
    Свободнорадикальная полимеризация – один из видов цепных процессов синтеза полимеров. Поляризация исходных молекул мономера облегчает их реакции с радикалами инициатора при химическом инициировании или при физических методах генерации радикалов. Электроноакцепторные заместители способствуют большей стабильности радикалов мономера и растущих цепей. Процесс радикальной полимеризации можно регулировать различными приемами как по скорости конверсии мономера, так и по величине молекулярной массы полимера. Для этого используют добавки низкомолекулярных веществ, выполняющих функции ингибиторов или замедлителей реакции, а также осуществляющих передачу реакционной цепи или снижающих энергию активации распада инициаторов на радикалы. Знание закономерностей свободнорадикальной полимеризации позволяет управлять структурой полимера, а следовательно, и его физическими и механическими свойствами. Благодаря простоте этот способ получения полимеров нашел широкое применение в промышленности.

Синтетические полимеры

В ХХ веке появление синтетических высокомолекулярных соединений – полимеров - было технической революцией. Полимеры получили очень широкое применение в самых различных практических областях. На их основе были созданы материалы с новыми во многом необычными свойствами, значительно превосходящими ранее известные материалы.

Полимеры – это соединения, молекулы которых состоят из повторяющихся единиц - мономеров.

Известны природные полимеры . К ним относятся полипептиды и белки, полисахариды, нуклеиновые кислоты.

Синтетические полимеры получаются путем полимеризации и поликонденсации (см. дальше) низкомолекулярных мономеров.

Структурная классификация полимеров

а) линейные полимеры

Имеют линейное строение цепи. Их названия производятся от названия мономера с добавлением приставки поли -:

б) сетчатые полимеры:

в) сетчатые трехмерные полимеры:

Совместной полимеризацией различных мономеров получают сополимеры . Например:

Физико-химические свойства полимеров определяются степенью полимеризации (величина n) и пространственной структурой полимера. Это могут быть жидкости, смолообразные или твердые вещества.

Твердые полимеры по-разному ведут себя при нагревании.

Термопластичные полимеры – при нагревании расплавляются и после охлаждения принимают любую заданную форму. Это можно повторять неограниченное число раз.

Термореактивные полимеры – это жидкие или пластичные вещества, которые при нагревании затвердевают в заданной форме и при дальнейшем нагревании не расплавляются.

Реакции образования полимеров полимеризация

Полимеризация – это последовательное присоединение молекул мономера к концу растущей цепи. При этом все атомы мономера входят в состав цепи, и в процессе реакции ничего не выделяется.

Для начала реакции полимеризации необходимо активировать молекулы мономера с помощью инициатора. В зависимости от типа инициатора различают

    радикальную,

    катионную и

    анионную полимеризацию.

Радикальная полимеризация

В качестве инициаторов радикальной полимеризации применяют вещества, способные при термолизе или фотолизе образовывать свободные радикалы, чаще всего это органические перекиси или азосоединения, например:

При нагревании или освещении УФ-светом эти соединения образуют радикалы:

Реакция полимеризации включается в себя три стадии:

    Инициирование,

    Рост цепи,

    Обрыв цепи.

Пример – полимеризация стирола:

Механизм реакции

а) инициирование:

б) рост цепи:

в) обрыв цепи:

Радикальная полимеризация легче всего идет с теми мономерами, у которых образующиеся радикалы стабилизированы влиянием заместителей у двойной связи. В приведенном примере образуется радикал бензильного типа.

Радикальной полимеризацией получают полиэтилен, поливинилхлорид, полиметилметакрилат, полистирол и их сополимеры.

Катионная полимеризация

В этом случае активация мономерных алкенов производится протонными кислотами или кислотами Льюиса (BF 3 , AlCl 3 , FeCl 3) в присутствии воды. Реакция идет как электрофильное присоединение по двойной связи.

Например, полимеризация изобутилена:

Механизм реакции

а) инициирование:

б) рост цепи:

в) обрыв цепи:

Катионная полимеризация характерна для винильных соединений с электронодонорными заместителями: изобутилена, бутилвинилового эфира, α-метилстирола.

Радикальная полимеризация -- один из распространенных способов синтеза полимеров. Активным центром такой полимеризации являвшей свободный радикал. Как и всякий цепной процесс, радикальная полимеризация протекает через три основные стадии.

1. Инициирование (образование активного центра). На этой стадии происходит инициирование молекулы мономера с образованием первичного свободного радикала (R"*), легко взаимодействующего с различными ненасыщенными соединениями (мономерами):

В зависимости от способа образования свободных радикалов, начинающих реакционную цепь, различают несколько видов полимеризации: термическую, фотохимическую, радиационную и инициированную.

При термической полимеризации свободные радикалы образуются из мономеров под действием высоких температур (700--Ю00°С). Происходящий при этом разрыв двойной связи в молекуле приводит к появлению бирадикала:

который, взаимодействуя с молекулой мономера

образует более сложный бирадикал. Он, в свою очередь, превращается затем в мономакрорадикал. Следует, однако, отметить, что термическая полимеризация не имеет пока широкого практического значения, так как ее скорость сравнительно невелика.

Фотохимическая полимеризация инициируется при освещении молекул моно-мера. Возбужденная таким образом молекула мономера взаимодействует в результате соударения со второй молекулой с образованием бирадикала, который затем диспропорционируется в два монорадикала:

Радиационная полимеризация протекает при действии на мономеры б-, в-, г- и R-излучения. Образующиеся свободные радикалы инициируют затем реакцию полимеризации.

Однако наиболее распространенным и часто применяемым на практике методов полимеризации является инициированная полимеризация . Она активируется соединениями, которые легко распадаются на свободные радикалы в условиях полимеризации. Такие соединения называются инициаторами полимеризации. Они содержат в своих молекулах неустойчивые химические связи (О--О, N--N, S--S, О--N и др.), которые разрываются при гораздо меньшей энергии, чем это требуется для образования свободного радикала из молекулы мономера (при ее активации). Инициаторами могут быть органические пероксиды и гидропероксиды, некоторые азо- и диазосоединения и другие вещества:

пероксид бензола


гидропероксид изопропилбензола

(гипериз)


диазогидрат

Скорость распада инициатора на свободные радикалы можно увеличить не только повышением температуры, но и добавкой в реакционную среду специальных восстановителей -- промоторов и активаторов . Промоторы возбуждают химическую реакцию, действуя только в начале процесса, а активаторы поддерживают активность катализатора (инициатора) в течение всего процесса. Эти вещества способствуют образованию свободных радикалов из инициаторов при более низких температурах (окислительно-восстановительное инициирование). Роль таких добавок могут выполнять соли и других металлов, а также пирогаллол, третичные амины, аскорбиновая кислота и др.:

Количество вводимого инициатора обычно невелико (0,1 -- 1 %). Общая скорость радикальной полимеризации возрастает пропорционально корню квадратному из концентрации инициатора: , где -- концентрация инициатора. В то же время средняя степень полимеризации (Р) обратно пропорциональна корню квадратному из этой величины:

Таким образом, при увеличении концентрации инициатора ускоряется процесс радикальной (инициированной) полимеризации с одновременным снижением средней степени полимеризации.

2. Рост цепи. Реакция роста цепи заключается в многократном присоединении молекул мономера к усложняющемуся каждый раз радикалу с сохранением свободного электрона в концевом звене растущей макромолекулы. Другими словами, растущая макромолекулярная цепь должна оставаться в период ее роста свободным макрорадикалом:

В результате таких последовательных реакций присоединения двойная связь мономера превращается в простую, что сопровождается выделением энергии за счет разности энергий у- и р-связей.

3. Обрыв цепи. Конец роста цепи связан с исчезновением свободного электрона у последнего звена макромолекулы. Чаще всего это происходит в результате соединения между собой двух радикалов (реакция рекомбинации), что приводит к возникновению цепи, которая не способна к дальнейшему росту:

Однако свободные радикалы (макрорадикалы), являясь исключительно реакционноспособными частицами, взаимодействуют не только с мономерами, но и с растворителем, различными примесями и с образовавшимися макромолекулами. При этом неподеленный электрон (активный центр) может перейти на любую другую молекулу, например молекулу растворителя, которая, превращаясь в радикал, дает начало новой макромолекуле:

Такие реакции называются реакциями передачи цепи. В данном случае передача цепи происходит через растворитель -- четыреххлористый углерод. Вероятность такой передачи увеличивается с повышением температуры полимеризации. При этом скорость реакции полимеризации не уменьшается, но, поскольку реакционная цепь распадается здесь на несколько молекулярных цепей, степень полимеризации образующегося полимера заметно понижается. Изменяя таким образом соотношение количества мономера и растворителя, можно получать полимеры с различной молекулярной массой. Вещества, через которые осуществляется передача цепи и регулируется средняя молекулярная масса полимера, называются регуляторами . В качестве регуляторов применяют четыреххлористый углерод, тиолы, тиогликолевую кислоту и др.

Реакции обрыва и передачи цепи часто используются в практических целях для стабилизации мономеров при их хранении. Это необходимо для предотвращения преждевременной полимеризации мономеров и для управления процессом полимеризации в целом. Для этого часто используют ингибиторы (стабилизаторы), которые при взаимодействии со свободными радикалами образуют малоактивные частицы, не способные в дальнейшем инициировать процесс полимеризации.

Если требуется только уменьшить скорость полимеризации, а не остановить процесс окончательно, применяют специальные вещества -- замедлители . Характер действия ингибиторов и замедлителей практически одинаков, а различие между ними скорее количественное, чем качественное.

Методом радикальной полимеризации получены такие известные полимеры, как поливинилхлорид, полистирол, бутадиенстирольные каучуки, полиметилметакрилат и др. По реакционной способности при проведении радикальной полимеризации некоторые мономеры можно расположить в ряд:

бутадиен > стирол > метилметакрилат > акрилонитрил > винилхлорид

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то