Физико химические основы горения заключаются. Физико-химические основы процесса горения

Горение есть главный и основной процесс на пожаре.

Горением называется сложный физико-химический процесс превращения исходных горючих веществ и материалов в продукты сгорания, сопровождающийся интенсивным выделением тепла, дыма и световым излучением факела пламени.

Пожар и взрыв -- разные явления, но в терминах теории вероятностей они происходят по одной логической схеме и имеют общую математическую модель. Пожар происходит при случайном появлении опасного источника и случайном нахождении в непосредственной близости горючего материала. Взрыв происходит при случайном появлении опасного источника и случайном появлении опасной концентрации взрывоопасного газа (пыли) в месте появления открытого источника .

Взрыв -- это относительно большое выделение количества энергии в конечном ограниченном объеме за сравнительно короткий промежуток времени. Это процесс интенсивного выделения тепловой энергии из горючей смеси при ее сгорании в ограниченном объеме.

Горение возможно при наличии трех условий: горючего вещества с определенной температурой воспламенения, достаточного количества окислителя, источника воспламенения определенной мощности.

Взрывоопасной средой являются: смеси веществ (газов, паров и пылей) с воздухом и другими окислителями (кислородом, озоном, окислами азота и др.), способные к взрывчатому превращению; отдельные вещества, склонные к взрывному разложению (ацетилен, озон, аммиачная селитра и др.).

Физико-химические основы горения заключаются в термическом разложении вещества или материала до углеводородных паров и газов, которые под воздействием высоких температур вступают в химические взаимодействия с окислителем (кислородом воздуха), превращаясь в процессе сгорания в углекислый газ (двуокись углерода), угарный газ (окись углерода), сажу (углерод) и воду, и при этом выделяется тепло и световое излучение.

По скорости распространения различают дефлаграционное, взрывное и детонационное горение. Важнейшая особенность процесса горения -- самоускоряющийся характер химического превращения.

Основными параметрами, характеризующими взрыв (взрывное горение), являются: максимальное давление взрыва, давление на фронте ударной волны, средняя и максимальная скорость нарастания давления при взрыве, фугасные или дробящие свойства взрывоопасной среды.

Детонация -- особая форма взрывного горения, при котором импульс воспламенения передается от слоя к слою не за счет теплопроводности, а вследствие импульса давления. Для возникновения детонации требуется сильная ударная волна. Она, как правило, возникает при резком увеличении скорости распространения пламени или при более мощном источнике зажигания .

Каждому горению присущ конкретный источник зажигания, при этом всякое горение начинается с самовоспламенения (самовозгорания) или вынужденного воспламенения (зажигания) от пламени (разогретого тела) или электрической искры.

Воспламенение -- это возгорание горючей среды под воздействием источника зажигания, сопровождающееся появлением пламени; самовоспламенение -- это явление резкого увеличения скорости экзотермической реакции, приводящей к возникновению горения в отсутствие источника зажигания.

Горению присущи опасные факторы, которые называются опасными факторами пожара. Опасными факторами, воздействующими на людей и материальные ценности, являются:

* пламя и искры;

повышенная температура окружающей среды;

* токсические продукты горения и термического разложения;

* пониженная концентрация кислорода.

Предельные значения опасных факторов пожара следующие:

* температура среды -- 70 °С;

* тепловое излучение -- 500 Вт/м2;

Верхний и нижний концентрационные пределы воспламенения (ВКПВ и НКПВ) -- соответственно максимальная и минимальная концентрации горючих газов, паров ЛВЖ, пыли или волокон в воздухе, выше и ниже которых взрыва не произойдет даже при возникновении источника инициирования взрыва.

Взрывоопасная смесь (ВОС) -- смесь с воздухом (кислородом или другим окислителем) ГГ, паров ЛВЖ, горючих пыли или волокон с НКПВ не более 65 г/м3 при переходе их во взвешенное состояние, которая при определенной концентрации способна взорваться при возникновении источника инициирования взрыва.

К взрывоопасным относятся:

* горючие газы при любой температуре окружающей среды.

* легковоспламеняющиеся жидкости у которых Гс п < 61 °С, а давление паров при температуре 20 °С менее 100 кПа (около 1 атм).

* горючие жидкости (Г с л > 61 °С), нагретые в условиях производства до температуры вспышки и выше.

* горючие пыли и волокна, если их НКПВ не превышает 65 г/м3.

* смесь горючих газов и паров ЛВЖ с кислородом воздуха или другим окислителем.

Взрывоопасная зона -- помещение или ограниченное пространство в помещении или наружной установки, в котором имеются или могут образовываться взрывоопасные смеси.

Оригинальный документ ?

ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ ПРОЦЕССОВ ГОРЕНИЯ

Химические процессы при горении. Природа горючих веществ. Лекция 3

Пожаровзрывоопасностъ веществ и материалов - это совокупность свойств, характеризующих их способность к возникновению и распростране­нию горения.

Следствием горения в зависимости от его скорости и условий протека­ния может быть пожар или взрыв.

Пожаровзрывоопасность веществ и материалов характеризуется пока­зателями, выбор которых зависит от агрегатного состояния вещества (мате­риала) и условий его применения.

При определении пожаровзрывоопасности веществ и материалов раз­личают следующие агрегатные состояния:

газы - вещества, давление насыщенных паров которых при нормаль­ных условиях (25°С и 101325 Па) превышает 101325 Па;

жидкости - вещества, давление насыщенных паров которых при нор­мальных условиях (25°С и 101325 Па) меньше 101325 Па. К жидкостям отно­сятся также твердые плавящиеся вещества, температура плавления или каплепадения которых ниже 50°С ;

твердые вещества и материалы - индивидуальные вещества и их сме­совые композиции с температурой плавления каплепадения выше 50°С , а также вещества, не имеющие температуру плавления (например, древесина, ткани, торф;

пыли - диспергированные вещества и материалы с размером частиц менее 850 мкм.

Горение как химическая реакция окисления веществ с участием кислорода

Горение - один из первых сложных физико-химических процессов, с которым человек встретился еще на заре своего развития. Процесс, овладев которым, он получил огромное превосходство над окружающими его живы­ми существами и силами природы.

Горение - одна из форм получения и преобразования энергии, основа многих технологических процессов производства. Поэтому человек постоян­но изучает и познает процессы горения.

История науки о горении начинается с открытия М.В. Ломоносова: "Горение есть соединение вещества с воздухом". Это открытие послужило основанием для открытия закона сохранения массы веществ пр и их физических и химических превращениях. Лавуазье уточнил определение процесса горения "Горение есть соединение вещества не с воздухом, а с кислородом воздуха".

В дальнейшем существенный вклад в изучение и развитие науки горении внесли советские и российские ученые А.В. Михельсон , Н.Н. Семенов, Я.В. Зельдовия , Ю.Б. Харитон, И.В. Блинов и др.

В основе процесса горения лежат экзотермические окислительно-восстановительные реакции, которые подчиняются законам химической кинетики, химической термодинамики и другим фундаментальным законам (закону сохранения массы, энергии и т.д.).

Горением называется сложный физико-химический процесс, при котором горючие вещества и материалы под воздействием высоких температур вступают в химическое взаимодействие с окислителем (кислоро­дом воздуха), превращаясь в продукты горения, и который сопровождается интенсивным выделением тепла и световым свечением.

В основе процесса горения лежит химическая реакция окисления, т.е. соединения исходных горючих веществ с кислородом. В уравнениях химиче­ских реакций горения учитывают и азот, который содержится в воздухе, хотя в реакциях горения не участвует. Состав воздуха условно принимают посто­янным , содержащим 21 % по объему кислорода и 79 % азота (в весовых со­ответственно 23 % и 77 % азота), т.е. на 1 объем кислорода приходится 3.76 объема азота. Или на 1 моль кислорода приходится 3.76 моль азота. Тогда, например, реакцию горения метана в воздухе можно записать так:

СН 4 + 2О 2 + 2 ´ 3.76 N 2 = СО 2 + 2Н 2 О + 2 ´ 3.76 N 2

Азот в уравнениях химических реакций учитывать необходимо потому, что он поглощает часть тепла, выделяемого в результате реакций горения, и вхо­дит в состав продуктов горения - дымовых газов.

Рассмотрим процессы окисления.

Окисление водорода осуществляется по реакции:

Н 2 + 0.5О 2 = Н 2 О.

Экспериментальные данные о реакции между водородом и кислородом много­численны и разнообразны. В любом реальном (высокотемпературном) пла­мени в смеси водорода и кислорода, возможно образование радикала * ОН или атомов водорода Н и кислорода О , которые инициируют окисление во­дорода до паров воды.

Горение углерода . Углерод, образующийся в пламенах , может быть газооб­разным, жидким или твердым. Его окисление независимо от агрегатного со­стояния происходит за счет взаимодействия с кислородом. Горение может быть полным или неполным, что определяется содержанием кислорода:

С + О 2 = СО 2 (полное) 2С + О 2 = 2СО (неполное)

Гомогенный механизм не исследован (углерод в газообразном состоянии). Взаимодействие углерода в твер­дом состоянии наиболее изучено. Этот процесс схематически можно пред­ставить из следующих этапов:

1. доставка окислителя (О 2 ) к поверхности раздела фаз путем молекулярной и конвективной диффузии;

2. физическая адсорбция молекул окислителя;

3. взаимодействие адсорбированного окислителя с поверхностными атомами углерода и образование продуктов реакции;

4.десорбция продуктов реакции в газовую фазу.

Горение окиси углерода . Суммарная реакция горения окиси углерода запишется СО + 0.5О 2 = СО 2 , хотя окисление монооксида углерода имеет более сложный механизм Основные закономерности горения окиси углерода можно объяснить на ос­новании механизма горения водорода, включая в него реакции взаимодейст­вия окиси углерода с образующимся в системе гидрооксидом и атомным ки­слородом, т.е. процесс этот многостадийный:

* ОН + СО = СО 2 + Н;О + СО = СО 2

Прямая реакция СО + О 2 -> СО 2 маловероятна, так как реальные сухие смеси СО и О 2 характеризуются чрезвычайно низкими скоростями горения или не могут воспламениться вообще.

Окисление простейших углеводородо в. Метан горит с образованием диоксида углерода и паров воды:

СН 4 + О 2 = СО 2 + 2Н 2 О.

Но этот процесс на самом деле включает в себя целый ряд реакций, в которых участвуют моле­кулярные частицы с высокой химической активностью (атомы и свободные радикалы): * СН 3 , * Н, * ОН. Хотя эти атомы и радикалы существуют в пламени короткое время, они обеспечивают быстрый расход горючего. В процессе го­рения природного газа возникают комплексы углерода, водорода и кислоро­да, а также комплексы углерода и кислорода, при разрушении которых обра­зуются СО, СО 2 , Н 2 О. Предположительно схему горения метана можно запи­сать так:

СН 4 → С 2 Н 4 →С 2 Н 2 →углеродистые продукты+О 2 → C x U y O z CO , СО 2 ,Н 2 О.

Термическое разложение, пиролиз твердых веществ

При повышении температуры твердого горючего материала происхо­дит разрыв химических связей с образованием более простых компонентов (твердых, жидких, газообразных). Этот процесс называется термическим раз­ложением или пиролизом . Термическое разложение молекул органических соединений происходит в пламени, т.е. при повышенных температурах вбли­зи поверхности горения. Закономерности разложения зависят не только от горючего, но и от температуры пиролиза, скорости ее изменения, размеров образца, его формы, степени распада и т.д.

Рассмотрим процесс пиролиза на примере наиболее распространенного твердого горючего материала - древесины.

Древесина представляет собой смесь большого количества веществ различного строения и свойств. Основными ее компонентами являются гемицеллюлоза (25 %), целлюлоза (50 %), лигнин (25 %). Гемицеллюлоза со­стоит из смеси пентазанов (С 5 Н 8 О 4), гексазанов (С 6 Н 10 О 5), полиуронидов . Лигнин имеет ароматическую природу и содержит связанные с ароматиче­скими кольцами углеводы. В среднем древесина содержит 50 % С , 6 % Н, 44 % О. Это пористый материал, объем пор в котором достигает 50 - 75 %. Наи­менее термостойким компонентом древесины является гемицеллюлоза (220 - 250°С), наиболее термостойким компонентом - лигнин (интенсивное его разложение наблюдается при температуре 350 - 450°С). Итак, разложение древесины состоит из следующих процессов:

пп

Температура,°С

Характеристика процессов

до 120 - 150

сушка, удаление физически связанной воды

150 - 180

Разложение наименее стойких компонентов (лумино-вых кислот) с выделением СО 2 , Н 2 О

250 - 300

пиролиз древесины с выделением СО, СН 4 , Н 2 , СО 2 , Н 2 О и т.д.; образующаяся смесь способна воспламе­няться от источника зажигания

350 - 450

Интенсивный пиролиз с выделением основной массы горючих веществ (до 40 % от всей массы); газообраз­ная смесь состоит из 25 % Н 2 и 40 % предельных и ненасыщенных углеводородов; обеспечивается мак­симальная поставка летучих компонентов в зону пла­мени; процесс на этой стадии экзотермический; коли­чество тепла, которое выделяется, достигает 5 - 6 % от низшей теплоты сгорания Q ≈ 15000 кДж/кг

500 - 550

Скорость термического разложения резко снижается; выход летучих компонентов прекращается (конец пи­ролиза); при 600 °С выделение газообразных продук­тов прекращается

Аналогично древесине протекает пиролиз каменного угля, торфа. Од­нако выход летучих у них наблюдается при других температурах. Каменный уголь состоит их более твердых термостойких углеродсодержащих компо­нентов, и разложение его протекает менее интенсивно и при более высоких температурах (рис.1).

Горение металлов

По характеру горения металлы делятся на две группы: летучие и неле­тучие. Летучие металлы имеют Т пл . < 1000 K и Т кип . < 1500 K . К ним относятся щелочные металлы (литий, натрий, калий) и щелочноземельные (магний, кальций). Горение металлов осуществляется следующим образом: 4 Li + О 2 = 2 Li 2 O . Нелетучие металлы имеют Т пл . > 1000 K и Т кип . > 2500 K .

Механизм горения во многом определяется свойствами оксида металла. Температура летучих металлов ниже температуры плавления их оксидов. При этом последние представляют собой достаточно пористые образования. При поднесении искры зажигания к поверхности металла происходит его испарение и окисление.

При достижении концентрации паров, равной нижнему концентрационному пределу воспламенения, происходит их воспламенение. Зона диффузионного горения устанавливается у поверхности, большая доля тепла передается металлу, и он нагревается до температуры кипения.

Образующиеся пары, свободно диффундируя через пористую оксидную пленку, поступают в зону горения. Кипение металла вызывает периодическое разрушение оксидной пленки, что интенсифицирует горение. Продукты горения (оксиды металлов) диффундируют не только к поверхности металла, способствуя образованию корки оксида металла, но и в окружающее пространство, где, конденсируясь, образуют твердые частицы в виде белого дыма. Образование белого плотного дыма является визуальным признаком горения летучих металлов.

У нелетучих металлов, обладающих высокими температурами фазово­го перехода, при горении на поверхности образуется весьма плотная оксидная пленка, которая хорошо сцепляется с поверхностью металла. В результате этого скорость диффузии паров металла через пленку резко снижается и крупные частицы, например, алюминия или бериллия, гореть не способны. Как правило, пожары таких металлов имеют место в том случае, когда они вводятся в виде стружки, порошков, аэрозолей. Их горение происходит без образования плотного дыма. Образование плотной оксидной пленки на поверхности металла приводит к взрыву частицы. Это явление особенно, часто наблюдающееся при движении частицы в высокотемпера­турной окислительной среде, связывают с накоплением паров металлов под оксидной пленкой с последующим внезапным ее взрывом. Это естественно приводит к резкой интенсификации горения.

Горение пылей

Пыль - это дисперсная система, состоящая из газообразной дисперсной среды (воздух) и твердой фазы (мука, сахар, древесина, уголь и т.д.).

Распространение пламени по пыли происходит за счет прогрева холодной смеси лучистым потоком от фронта пламени. Твердые частицы, поглощая тепло от лучистого потока, нагреваются, разлагаются с выделением горючих продуктов, которые образуют горючие смеси с воздухом.

Аэрозоль, имеющая очень мелкие частицы, при воспламенении быстро сгорает в зоне воздействия источника зажигания. Однако толщина зоны пламени настолько мала, что интенсивность его излучения оказывается недостаточной для разложения частиц, и стационарного распространения пламени по таким частицам не происходит.

Аэрозоль, содержащая крупные частицы, также неспособна к стационарному горению. С увеличением размера частиц снижается удельная поверхность теплообмена, и возрастает время их прогрева до температуры разложения.

Если время образования горючей паровоздушной смеси перед фронтом пламени за счет разложения частичек твердого материала больше времени существования фронта пламени, то горение происходить не будет.

Факторы, влияющие на скорость распространения пламени по пылевоздушным смесям:

1. концентрация пыли (максимальная скорость распространения пламени имеет место для смесей несколько выше стехиометрического состава, например, для торфяной пыли при концентрации 1 - 1.5 кг/м 3);

2.зольность (при увеличении зольности уменьшается концентрация горючего компонента и уменьшается скорость распространения пламени);

Классификация пыли по взрывопожарной опасности:

I класс - наиболее взрывоопасная пыль (концентрация до 15 г/м 3);

II класс - взрывоопасная до 15-65 г/м 3

III класс - наиболее пожароопасная > 65 г/м 3 Т св ≤ 250°С;

IV класс - пожароопасная > 65 г/м 3 Т св > 250°С.

Бескислородное горение

Существует ряд веществ, которые при повышении их температуры выше определенного уровня претерпевают химическое разложение, приводя­щее к свечению газа, едва отличимому от пламени. Пороха и некоторые синтетические материалы могут гореть без доступа воздуха или в нейтральной среде (в чистом азоте).

Горение целлюлозы (звено - С 6 Н 7 О 2 (ОН) 3 - ) можно представить в виде внут­ренней окислительно-восстановительной реакции в молекуле, содержащей атомы кислорода, которые могут реагировать с углеродом и водородом целлюлозного звена.

Пожар, в котором участвует нитрат аммония, может поддерживаться без подвода кислорода. Эти пожары вероятны при большом содержании нит­рата аммония (около 2000 т) в присутствии органического вещества, в част­ности, бумажных пакетов или упаковочных мешков.

В качестве примера можно привести аварию в 1947 г. Судно “ Grandcamp ” назодилось в порту Техас-Сити с грузом около 2800 т нитрата аммония. Пожар возник в грузовом отсеке с нитратом аммония, упакованном в бумажные мешки. Капитан судна принял решение не гасить огонь водой, чтобы не испортить груз, и пытался ликвидировать пожар, задраив палубные люки и впуская пар в грузовой отсек. Такие меры способствуют ухудшению ситуации, усиливая пожар без доступа воздуха, поскольку происходит подогрев нитрата аммония. Пожар начался в 8 часов утра, а в 9 час. 15 мин.п роизошел взрыв. В результате погибло более 200 человек, столпившихся в порту и наблюдавших за пожаром, в том числе команда судна и экипаж двух самолетов из 4 человек, облетавших судно.

В 13 час 10 мин следующего дня на другом судне, транспортировавшем нитрат аммония и серу, которое загорелось от первого судна накануне, также произошел взрыв.

Маршалл описывает пожар, возникший вблизи Франкфурта в 1961 г. Самопроизвольное термическое разложение, вызванное лентой транспортера, привело к загоранию 8.. т удобрений, треть этого количества составлял нитрат аммония, а остальное - инертные вещества, используемые в качестве удобрений. Пожар продолжался 12 часов. В результате пожара выделялось большое количество ядовитых газов, в состав которых входил азот.

Более 90 % всей энергии, используемой человечеством сегодня, вырабатывается в процессе горения. Начало научным исследованиям теории горения было положено российским ученым Михельсоном В.А.

Горение – сложный физико-химический процесс превращения исходных горючих веществ и материалов в продукты сгорания, сопровождающийся интенсивным выделением тепла, дыма и световым излучением факела пламени.

Для возникновения такой физико-химической реакции, лежащей в основе любого пожара, необходимо наличие трех обязательных компонентов: горючей среды, источника зажигания и окислителя.

Горючая среда – среда, способная самостоятельно гореть после удаления источника зажигания.

Источник зажигания – это тепловой источник с достаточной для зажигания температурой, энергией и длительностью действия.

Различают горение кинетическое и диффузионное.

Кинетическое горение представляет собой горение предварительно перемешанных горючих газов и окислителя.

Диффузионное горение – это горение, при котором окислитель поступает в зону горения извне. Диффузионное горение, в свою очередь, бывает ламинарным (спокойным) и турбулентным (неравномерным) во времени и в пространстве.

В зависимости от агрегатного состояния исходного горючего вещества различают гомогенное , гетерогенное горение и горение конденсированных систем .

При гомогенном горении окислитель и горючее находятся в одинаковом агрегатном состоянии. К этому типу относится горение газовых смесей (природного газа, водорода, пропана и т.п. с окислителем – обычно кислородом воздуха).

При гетерогенном горении исходные вещества (например, твердое или жидкое горючее и газовый окислитель) находятся в разных агрегатных состояниях. Твердые вещества, превращенные в пыль (угольную, текстильную, растительную, металлическую), при перемешивании с воздухом образуют пожаровзрывоопасные пылевоздушные смеси.

Горение конденсированных систем связано с переходом вещества из конденсированного состояния в газ.

В зависимости от скорости распространения пламени горение может быть дефлаграционным − со скоростью несколько м/с, взрывным − скорость порядка десятков и сотен м/с и детонационным − сотни и тысячи м/с.

Для дефлаграционного или нормального распространения горения характерна передача тепла от слоя к слою. В результате этого фронт пламени перемещается в сторону горючей смеси.

Взрывным горением называется процесс горения со стремительным высвобождения энергии и образованием при этом избыточного давления (более 5 кПа).

При детонационном горении (детонации) распространение пламени происходит со скоростью, близкой к скорости звука или превышающей ее.

Детонация есть процесс химического превращения системы окислитель − восстановитель, представляющий собой совокупность ударной волны, распространяющейся с постоянной скоростью, и следующей за фронтом зоны химических превращений исходных веществ. Химическая энергия, выделяющаяся в детонационной волне, подпитывает ударную волну, не давая ее затухать.

Скорость детонационной волны есть характеристика каждой конкретной системы. Для гетерогенных систем характерна малоскоростная детонация, обусловленная спецификой реакции газ - твердое вещество. При детонации газовых смесей скорости распространения пламени составляют (1-3)∙10 3 м/с и более, а давление во фронте ударной волны (1-5)МПа и более.

Горению свойственны опасные факторы, которые называются опасными факторами пожара .

Под пожаром понимается неконтролируемое горение, причиняющее материальный ущерб, вред жизни и здоровью граждан, интересам общества и государства.

К опасным факторам пожара (согласно ГОСТ 12.1.004-91) относятся:

Пламя и искры;

Повышенная температура окружающей среды;

Пониженная концентрация кислорода;

Токсические продукты горения

Термического разложения.

Пламя − это видимая часть пространства (пламенная зона), внутри которой протекают процессы окисления, дымообразования и тепловыделения, а также генерируются токсические газообразные продукты и поглощается кислород из окружающего пространства.

Пламя в количественном отношении в основном характеризуется следующими величинами:

Площадью горения (F 0 , м 2), - скоростью выгорания (Ψ , кг/с), - мощностью тепловыделения (Q гор , Вт) - оптическим количеством дыма (ΨD , Непер∙м 2 ∙кг -1).

Особенностями горения на пожаре, в отличие от других видов горения, являются: склонность к самопроизвольному распространению огня; сравнительно невысокая степень полноты сгорания и интенсивное выделение дыма, содержащего продукты полного и неполного окисления.

На пожарах образуются три зоны:

- Зона горени я − часть пространства, в котором происходит подготовка веществ к горению (подогрев, испарение, разложение) и собственно горение.

- Зона теплового воздействия − часть пространства, примыкающая к зоне горения, в которой тепловое воздействие приводит к заметному изменению состояния материалов и конструкций, и где не возможно пребывание людей без специальной тепловой защиты.

- Зона задымления − часть пространства, примыкающая к зоне горения и расположенная как в зоне теплового воздействия, так и вне ее и заполненная дымовыми газами в концентрациях, угрожающих жизни и здоровью людей.

Горение может осуществляться в двух режимах: самовоспламенения и распространения фронта пламени .

Распространение пламени − процесс распространения горения по поверхности вещества и материалов за счет теплопроводности, тепловой радиации (излучения) и конвекции.

Оценивая динамику развития пожара можно выделить несколько его основных фаз:

- 1 фаза (до 10 мин) − начальная стадия, включающая переход возгорания в пожар за время примерно 1-3 минуты и рост зоны горения в течение 5-6 минут. При этом происходит преимущественно линейное распространение огня вдоль горючих веществ и материалов, что сопровождается обильным дымовыделением.

- 2 фаза − стадия объемного развития пожара, занимающая по времени 30-40 минут, характеризуется бурным процессом горения с переходом в объемное горение. Процесс распространения пламени происходит дистанционно за счет передачи энергии горения на другие материалы. Максимальных значений достигает температура (до 800-900 о С) и скорости выгорания.

Стабилизация пожара при максимальных его значениях происходит на 20-25 минуте и продолжается еще 20-30 минут, при этом выгорает основная масса горючих материалов.

- 3 фаза − фазы затухания пожара, т.е. догорание в виде медленного тления. После чего пожар прекращается.

Согласно ИСО № 3941-77 пожары делятся на следующие классы:

- класс А − пожары твердых веществ, в основном органического происхождения, горение которых сопровождается тлением (древесина, текстиль, бумага);

- класс В − пожары горючих жидкостей или плавящихся твердых веществ;

- класс С − пожары газов;

- класс Д − пожары металлов и их сплавов;

- класс Е − пожары, связанные с горением электроустановок.

Характеристиками горючей смеси по показателям пожаро- взрывоопасности являются:

Группы горючести,

Концентрационные пределы распространения пламени (воспламенения),

Температура вспышки, - температура воспламенения и самовоспламенения.

Группа горючести − показатель, который применим к следующим агрегатным состояниям веществ:

- газы − вещества, абсолютное давление паров которых при температуре 50 о С равно или более 300 кПа или критическая температура которых менее 50 о С;

- жидкости − вещества с температурой плавления (каплепадения) менее 50 о С;

- твердые вещества и материалы с температурой плавления (каплепадения) более 50 о С;

- пыли − диспергированные вещества и материалы с размером частиц менее 850 мкм.

Горючесть − способность вещества или материала к горению. По горючести они подразделяются на три группы.

Негорючие (несгораемые ) − вещества и материалы, не способные к горению на воздухе. Негорючие вещества могут быть пожароопасными, (например, окислители, а также вещества, выделяющие горючие продукты при взаимодействии в водой, кислородом воздуха или друг с другом).

Трудногорючие (трудносгораемые ) − вещества и материалы, способные возгораться в воздухе от источника зажигания, но неспособные самостоятельно гореть после его удаления.

Горючие (сгораемые ) − вещества и материалы, способные самовозгораться, а также возгораться в воздухе от источника зажигания и самостоятельно гореть после его удаления.

Из этой группы выделяют легко воспламеняющиеся вещества и материалы − способные воспламенятся от кратковременного (до 30 с) воздействия источника зажигания с низкой энергией (пламя спички, искра, тлеющая сигарета и т.п.).

Концентрационные пределы воспламенения − минимальная и максимальная концентрация (массовая или объемная доля горючего в смеси с окислительной средой), выраженная в %, г/м 3 или л/м 3 , ниже (выше) которой смесь становится неспособной к распространению пламени.

Различают нижний и верхний концентрационные пределы распространения пламени (соответственно НКПРП и ВКПРП ).

НКПРП (ВКПРП) − минимальное (максимальное) содержание горючего в смеси (горючее вещество – окислительная среда), при котором возможно распространение пламени по смеси на любое расстояние от источника зажигания. Например, для смеси природного газа, состоящего в основном из метана, концентрационный предел воспламенения (детонационного горения) составляет 5-16 %, а взрыв пропана возможен при содержании в 1 м 3 воздуха 21 л газа, а возгорание − при 95 л.

Температура вспышки (t всп ) − минимальная температура горючего вещества, при которой на его поверхности образуются газы и пары, способные вспыхивать в воздухе от источника зажигания, но скорость их образования еще недостаточна для устойчивого горения.

В зависимости от численного значения t всп жидкости их относят к легковоспламеняющимся (ЛВЖ) и горючим (ГЖ ). В свою очередь ЛВЖ подразделяются на три разряда в соответствии с ГОСТ 12.1.017-80.

Особо опасные ЛВЖ − это горючие жидкости с t всп от −18 о С и ниже в закрытом или от −13 о С в открытом пространстве. К ним относятся ацетон, диэтиловый эфир, изопентан и др.

Постоянно опасные ЛВЖ − это горючие жидкости с t всп от −18 о С до +23 о С в закрытом или от −13 о С до 27 о С в открытом пространстве. К ним относятся бензол, толуол, этиловый спирт, этилацетат и др.

Опасные при повышенной температуре ЛВЖ − это горючие жидкости с t всп от 23 о С до 61 о С в закрытом или выше 27 о С до 66 о С в открытом пространстве. К ним относятся скипидар, уайт-спирит, хлорбензол и др.

Температура вспышки используется для определения категорий помещений зданий и наружных установок по взрывопожарной и пожарной опасности согласно НПБ 105-03, а также при разработке мероприятий для обеспечения пожаро- и взрывобезопасности ведения процессов

Температура самовоспламенения − самая низкая температура вещества, при которой происходит резкое увеличение скорости энергии.

Понятие «взрыв » используется во всех процессах, которые могут вызвать существенное повышение давления в окружающей среде.

На основании ГОСТ Р 22.08-96 взрыв − это процесс выделения энергии за короткий промежуток времени, связанный с мгновенным физико-химическим изменением состояния вещества, приводящим к возникновению скачка давления или ударной волны, сопровождающейся образованием сжатых газов или паров, способных производить работу.

На взрывоопасных объектах возможны следующие виды взрывов:

- взрывные процессы − неконтролируемое резкое высвобождение энергии в ограниченном пространстве;

- объемный взрыв − образование облаков топливно-воздушных или других газообразных, пылевоздушных смесей и их быстрыми взрывными превращениями;

- физические взрывы − взрывы трубопроводов, сосудов, находящихся под высоким давлением или перегретой жидкостью.

Аварийный взрыв – чрезвычайная ситуация, возникающая на потенциально опасном объекте в любой момент времени в ограниченном пространстве спонтанно, по стечению обстоятельств или в результате ошибочных действий работающего на нем персонала

Причинами взрывов, в основном, являются:

Нарушение технологического регламента;

Внешние механические воздействия;

Старение оборудование и установок;

Конструкторские ошибки;

Изменение состояния герметизируемой среды;

Ошибки обслуживающего персонала;

Неисправность контрольно-измерительных, регулирующих и предохранительных устройств.

Рассмотрим физико-химические основы процесса горения. Горение - это сложное, быстропротекающее физико-химическое превращение веществ, сопровождающееся выделением тепла и света.

Таким образом, для протекания процесса горения требуется наличие трех факторов: горючего вещества, окислителя и источника зажигания (импульса). Чаще всего окислителем является кислород воздуха, но его роль могут выполнять и некоторые другие вещества: хлор, фтор, бром, йод, оксиды азота и др. Некоторые вещества (например, сжатый ацетилен, хлористый азот, озон) могут взрываться с образованием тепла и пламени. Горение большинства веществ прекращается, когда концентрация кислорода понижается с 21 до 14-18%. Некоторые вещества, например, водород, этилен, ацетилен, могут гореть при содержании кислорода воздуха до 10% и менее.

Источниками зажигания могут служить случайные искры различного происхождения (электрические, возникшие в результате накопления статического электричества, искры от газо- и электросварки и т.д.), нагретые тела, перегрев электрических контактов и др.

Различают полное и неполное горение. Процессы полного горения протекают при избытке кислорода, а продуктами реакции являются вода, диоксиды серы и углерода, т. е. вещества, не способные к дальнейшему окислению.

В зависимости от свойств горючей смеси горение бывает гомогенным и гетерогенным. При гомогенном горении горючее вещество и окислитель имеют одинаковое агрегатное состояние (например, смесь горючего газа и воздуха), а при гетерогенном - вещества при горении имеют границу раздела (например, горение твердых или жидких веществ в контакте с воздухом).

По скорости распространения пламени различают следующие виды горения: дефлаграционное (скорость распространения пламени - десятки метров в секунду), взрывное (сотни метров в секунду) и детонационное (тысячи метров в секунду). Для пожаров характерно дефлаграционное горение.

Принято различать бедные и богатые горючие смеси в зависимости от соотношения горючего и окислителя. Бедные смеси содержат в избытке окислитель, а богатые - горючее.

Процессы возникновения горения следующие:

  • - Вспышка - быстрое сгорание горючей смеси, не сопровождающееся образованием сжатых газов;
  • - Возгорание - возникновение горения под действием источника зажигания;
  • - Воспламенение - возгорание, сопровождающееся появлением пламени;
  • - Самовозгорание - явление резкого увеличения скорости экзотермических реакций, приводящее к возникновению горения вещества при отсутствии источника зажигания;
  • - Самовоспламенение - самовозгорание, сопровождающееся появлением пламени.

Взрыв - чрезвычайно быстрое химическое (взрывчатое) превращение, сопровождающееся выделением энергии и образованием сжатых газов, способных производить механическую работу.

При пожаре на людей воздействуют следующие опасные факторы: повышенная температура воздуха или отдельных предметов, открытый огонь и искры, токсичные продукты сгорания (например, угарный газ), дым, пониженное содержание кислорода в воздухе, взрывы и др.

Оценим пожарную опасность (пожароопасность) различных веществ и материалов, учитывая их агрегатное состояние (твердое, жидкое или газообразное). Основные показатели пожарной опасности - температура самовоспламенения и концентрационные пределы воспламенения.

Температура самовоспламенения - минимальная температура вещества или материала, при которой происходит резкое увеличение скорости экзотермических реакций, заканчивающееся пламенным горением. Отличие этого процесса от процесса возгорания заключается в том, что при последнем процессе загорается только поверхность вещества или материала, а при самовоспламенении горение происходит во всем объеме. Процесс самовоспламенения происходит только в том случае, если количество теплоты, выделяемое в процессе окисления, превысит ее отдачу в окружающую среду.

Смеси горючих газов, паров и пыли с окислителем способны гореть только при определенном соотношении в них горючего вещества. Минимальную концентрацию горючего вещества, при котором оно способно загораться и распространять пламя, называют нижним концентрационным пределом воспламенения. Наибольшую концентрацию, при которой еще возможно горение, называют верхним концентрационным пределом воспламенения. Область концентрации между этими пределами представляет собой область воспламенения.

Значения нижнего и верхнего пределов воспламенения не являются постоянными, а зависят от мощности источника воспламенения, содержания в горючей смеси инертных компонентов, температуры и давления горючей смеси. Кроме концентрационных различают и температурные пределы (нижний и верхний) воспламенения, под которыми понимают такие температуры вещества или материала, при которых его насыщенные горючие пары образуют в окислительной среде концентрации, равные соответственно нижнему и верхнему концентрационным пределам распространения пламени.

Температура воспламенения - это минимальная температура вещества или материала, при которой они выделяют горючие пары и газы с такой скоростью, что при наличии источника зажигания возникает устойчивое горение. После удаления этого источника вещество продолжает гореть. Таким образом, температура воспламенения характеризует способность вещества к самостоятельному устойчивому горению.

Температура вспышки (t всп) - это минимальная температура горючего вещества, при которой над его поверхностью образуются пары или газы, способные вспыхнуть от источника. Скорость образования горючих газов при вспышке еще недостаточна для возникновения пламени.

Температура вспышки используется для характеристики всех горючих жидкостей по пожарной опасности. По этому показателю все горючие жидкости делятся на два класса: легковоспламеняющиеся (ЛВЖ), к которым относятся жидкости с температурой вспышки до 61°С (бензин, ацетон, этиловый спирт и др.) и горючие (ПК) с температурой вспышки выше 61°С (масло, мазут, формалин и др.).

Температура воспламенения, температура вспышки, а также температурные пределы воспламенения относятся к показателям пожарной опасности. В таблице 1.1 представлены эти показатели для некоторых технических продуктов.

Пыли многих твердых горючих веществ, взвешенные в воздухе, образуют с ним воспламеняющиеся смеси. Минимальную концентрацию пыли в воздухе, при которой происходит ее загорание, называют нижним концентрационным пределом воспламенения пыли. Понятие верхнего концентрационного предела воспламенения для пыли не применяется, так как невозможно создавать очень большие концентрации пыли во взвешенном состоянии.

ГОСТ 12.1.004-76 «ССБТ. Пожарная безопасность. Общие требования» предусматривает следующую классификацию веществ:

НГ - негорючее вещество, т. е. вещество, неспособное к горению в атмосфере воздуха обычного состава;

ТГ - трудногорючее вещество, т. е. вещество, способное гореть под воздействием источника зажигания, но не способное к самостоятельному горению после удаления его;

ГВ - горючее вещество, т. е. вещество, способное самостоятельно гореть после удаления источника зажигания;

ГЖ - горючая жидкость, т. е. жидкость, способная самостоятельно гореть после удаления источника зажигания и имеющая температуру вспышки выше 61 (в закрытом тигле) или 66°С (в открытом тигле);

ЛВЖ -легковоспламеняющаяся жидкость, т. е. жидкость, способная самостоятельно гореть после удаления источника зажигания и имеющая температуру вспышки не выше 61 (в закрытом тигле) или 66°С (в открытом тигле);

ГГ - горючий газ, т. е. газ, способный образовывать с воздухом воспламеняемые и взрывоопасные смеси при температурах не выше 55 °С;

ВВ - взрывоопасное вещество, т. е. вещество, способное к взрыву или детонации без участия кислорода воздуха.

Кроме рассмотренных характеристик пожароопасности веществ и материалов, используется понятие горючести вещества или материала, т. е. их способности к горению. По этому признаку все вещества делятся на горючие (сгораемые), трудногорючие (трудносгораемые) и негорючие (несгораемые).

Горючими называют такие вещества и материалы, которые продолжают гореть и после удаления источника зажигания. Трудносгораемые вещества способны возгораться на воздухе от источника зажигания, но после его удаления самостоятельно гореть не могут. Негорючие вещества и материалы не способны гореть на воздухе. Для количественной характеристики горючести веществ и материалов используют показатель возгораемости В, смотреть формулу 2.1

где Q u - количество теплоты, полученный от источника поджигания;

Q 0 - количество теплоты, выделяемой образцом при горении в процессе испытания.

Если величина В более 0,5, то материалы относят к сгораемым, для трудносгораемых В = 0,1-0,5, а для несгораемых - В менее 0,1.

Горение - химический процесс соединения веществ с кислоро­дом, сопровождающийся выделением тепла и света. Для возникнове­ния горения необходим контакт горючего вещества с окислителем (кислород, фтор, хлор, озон) и с источником зажигания, способный передать горючей системе необходимый энергетический импульс. Наиболее бурно горят вещества в чистом кислороде. По мере умень­шения его концентрации горение замедляется. Большинство веществ прекращают горение при снижении концентрации кислорода в воз­духе до 12...14%, а тление - при 7...8% (водород, сероуглерод, оксид этилена и некоторые другие вещества могут гореть в воздухе при 5% кислорода).

Температура, при которой вещество воспламеняется и начинает гореть, называется температурой воспламенения. Эта температура неодинакова у различных веществ и зависит от природы вещества, атмосферного давления, концентрации кислорода и других факторов.

Самовоспламенение - процесс горения, вызванный внешним источником тепла и нагреванием вещества без соприкосновения с от­крытым пламенем.

Температура самовоспламенения - самая низкая температура горючего вещества, при которой происходит резкое увеличение скоро­сти экзотермических реакций, заканчивающееся возникновением пла­мени. Температура самовоспламенения зависит от давления, состава летучих веществ, степени измельчения твердого вещества.

Различают следующие виды процессов горения: вспышка, возго­рание, воспламенение, самовозгорание.

Вспышка - быстрое сгорание горючей смеси, не сопровождаю­щееся образованием сжатых газов.

Температура вспышки - самая низкая температура горючего вещества, при которой над его поверхностью образуются пары или га­зы, способные вспыхивать от источника зажигания, но скорость их об­разования еще недостаточна для последующего горения.

Возгорание - возникновение горения под воздействием источ­ника зажигания.

Воспламенение - возгорание, сопровождающееся появлением пламени.

Температура воспламенения - наименьшая температура ве­щества, при которой в условиях специальных испытаний вещество выделяет горючие пары и газы с такой скоростью, что после их зажи­гания возникает устойчивое пламенное горение. Температура воспла­менения всегда несколько выше температуры вспышки.

Самовозгорание - процесс самонагрева и последующего горения некоторых веществ без воздействия открытого источника зажигания.

Химическое самовозгорание является результатом взаимодействия веществ с кислородом воздуха, воды или между самими веществами. К самовозгоранию предрасположены растительные масла, животные жиры и пропитанные ими тряпки, ветошь, вата. Разогрев этих ве­ществ происходит за счет реакции окисления и полимеризации, кото­рые могут начаться при обычных температурах (10...30 °С). Ацети­лен, водород, метан в смеси с хлором самовозгораются на дневном свету; сжатый кислород вызывает самовозгорание минеральных ма­сел; азотная кислота - деревянной стружки, соломы, хлопка.

К микробиологическому самовозгоранию склонны многие про­дукты растениеводства - сырое зерно, сено и др., в которых при опре­деленной влажности и температуре интенсифицируется жизнедеятель­ность микроорганизмов и образуется паутинистый глей (гриб). Это вызывает повышение температуры веществ до критических величин, после которых происходит самоускорение экзотермических реакций.

Тепловое самовозгорание происходит при первоначальном внеш­нем нагреве вещества до определенной температуры. Полувысыхаю­щие растительные масла (подсолнечное, хлопковое и др.), скипидарные лаки и краски могут самовозгораться при температуре 80. ..100 °С, дре­весные опилки, линолеум - при 100 °С. Чем ниже температура самовозгорания, тем более пожароопасным является вещество.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то